Osmotic stress in barley regulates expression of a different set of genes than salt stress does.
نویسندگان
چکیده
Under high salt conditions, plant growth is severely inhibited due to both osmotic and ionic stresses. In an effort to dissect genes and pathways that respond to changes in osmotic potential under salt stress, the expression patterns were compared of 460 non-redundant salt-responsive genes in barley during the initial phase under osmotic versus salt stress using cDNA microarrays with northern blot and real-time RT-PCR analyses. Out of 52 genes that were differentially expressed under osmotic stress, 11, such as the up-regulated genes for pyrroline-5-carboxylate synthetase, betaine aldehyde dehydrogenase 2, plasma membrane protein 3, and the down-regulated genes for water channel 2, heat shock protein 70, and phospholipase C, were regulated in a virtually identical manner under salt stress. These genes were involved in a wide range of metabolic and signalling pathways suggesting that, during the initial phase under salt stress, several of the cellular responses are mediated by changes in osmotic potential.
منابع مشابه
The Study of SOS Genes Expression in Mutant Barley Root under Salt Stress
Soil salinity is one of the most critical factors reducing crop yield. SOS signaling is one of the significant pathways that regulate ion homeostasis and it has the important role in mechanism of plant resistance to environmental stresses such as salt stress. Roots are the first organ of plants exposed to salt, so the role of genes involved in this pathway and their relation to salt tolerance w...
متن کاملThe responses of L-gulonolactone oxidase and HKT2;1 genes in Aeluropus littoralis’ shoots under high concentration of sodium chloride
Salinity is one of the most important abiotic stresses that limit crop growth and production. Salt stress influences plants in two ways: by affecting ion toxicity and increasing osmotic stress. Ion homeostasis, the excretion of Na+ and using antioxidant systems are the major strategies of salt tolerance in plants. Na+ and K+ transporters with enzymes that are involved in detoxification of react...
متن کاملExpression pattern analysis of transcription factors from Aeluropus littoralis in response to salt stress and recovery condition.
Salinity is one of the most important abiotic stresses that decrease crop production. Transcription factors (TFs) are prominent regulators in plant responses to abiotic stress. In the present study, the expression pattern of four salt-induced genes encoding transcription factors, namely, MYB, RF2, GTF, and ARID was studied in response to salt stress (sodium chloride) and recovery conditions. Th...
متن کاملIdentification and evaluation of HvPIP1; 4 and HvnsLTP genes expression for drought tolerance in barley
It is of great significance to understand the tolerance mechanisms by which plants deal with drought stress and application of these mechanisms for improvement of genotypes in response to drought stress. In order to identify and investigate the expression of genes involved in tolerance to drought stress, leaf and root EST were analyzed in Spontaneum (wild barley) and Nimruz (tolernt to drought ...
متن کاملExpression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR
The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 55 406 شماره
صفحات -
تاریخ انتشار 2004